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ABSTRACT

Three numerical procedures are presented for updating regressions. All three

methods are based on QR factorization, but after that they use different philosophies

to update the regression coefficients. Elden’s algorith.n updates using only the

triangular matrix R. This procedure does not use orthogonal transformations, but it

uses hyperbolic rotations. The modified Gram-Schmidt QR process is used by Gragg-

Leveque-Trangenstein’s method where the matrix with orthonormal columns is stored

and updated. Chan’s algorithm computes a column permutation II and a QR

factorization of a matrix A such that a rank deficiency of A will be revealed. Although

the three methods are based on different ideas and can be used for different purposes

their comparison shows that Chan'’s algorithm is the only accurate one in the rank

deficient case, and that Gragg-Leveque-Trangenstein’s method is the cheapest and the

most stable.
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I. INTRODUCTION

A. BACKGROUND

Regression analysis provides a variety of modeling
techniques that allows the analyst to relate a dependent
variable to one or more independent <variables. The
mathematical complexity of the model and the degree to which
it is a realistic model will depend on how much is known about
the process being studied and on the purpose of the modeling
exercise. In preliminary studies of a process or in cases
where prediction is the primary objective, the models will
frequently fall in the class of models that are linear in the
parameters. That is, the parameters enter the model as simple
coefficients of the independent variables or functions of the
independent variables. Such models will be referred to loosely
as linear models. In many statistical problems, it is useful
to express the dependent variable as a linear function of the
independent variables. Furthermore, regression analysis can
summarize data and quantify the nature and strength of the
relationships among variables. Regression analysis can also be
used to predict new values of the dependent variables based on

observed relationships.




B. ANALYSIS OF REGRESSION

As the reader will see in the following chapter, the main
purpose of this thesis is to analyze the efficiency and
numerical stability of some procedures for updating
regressions. Most regression problems, however, require
decisions on which variables to include in the model, the form
the variables should take, for example, X, X?, 1/X, etc., and
the functional form of the model. It is assumed that there is
a set of t candidate variables, which presumably includes all
relevant variables, from which a subset of r variables is to
be chosen for the regression equation. The candidate variables
may include different forms of the same basic variable, such
as X and X?, and the selection process may include constraints
on which variables are to be included. For example, X may be
forced into the model if X? is in the selected subset. This is
a common constraint in building polynomial models.

There are three distinct problem areas related to this
general topic:

m The theoretical effects of variable selection on the
least squares regression results.

® The computational methods for finding the "best" subset
of variables for each subset size.

8 The choice of subset size (for the final model), or the

"stopping rule".




This thesis mainly discusses the second problem area of
finding the more efficient and numerically stable
computational methods. Also, we generally discuss the criteria
for the "“"best" subset size choice, in other words the criteria
for the "stopping rules".

The simplest linear model involves only one independent
variable and states that the true mean of the dependent
variable changes at a constant rate as the value of the
independent variable increases or decreases. Thus, the
functional relationship between the true mean of Y,, E(Y,), and

X, is the eqguation of a straight line,

E(Yi) =B°+ﬂ1 (Xi) ’

where B, is the intercept, or the value of E(Y,) when X = 0,
and B, is the slope of the line, or the rate of change in E(Y,)
per unit change in X. The constants B, and B, are population
parameters which are to be estimated from the sample of
observations.

The observations of the dependent variables, Y,, are
assumed to be random observations from populations of random
variables with the mean of each population given by E(Y,). The
deviation of an observation Y, from its population mean E(Y;)
is taken into account by adding a random error, €;, to give

the statistical model




Y, =B, +B, X, +€,. (1.1)
The subscript i indicates the particular observation unit, i
=1,2,...,n. The X, are the n observations of the independent
variable and are assumed to be measured without error; that
is, the observed values of X are assumed to be a set of known
constants. The Y, and X, are paired observations; both are
measured on every observational unit. The random errors ¢,
are assumed to be normally, independently and identically

distributed: [Ref. 1]

€,~NID(0, 0?) .

1. The Matrix Model

Given the above regression model, we can write it in
matrix form as Y = X8 + €, where Y is the n x 1 column vector
of observations of the dependent variable. The n x p matrix X,
where X, = X;p = ... = X, = 1, will be called the regression
matrix, and the Xx;,'s are generally chosen so that the column
of X are linearly independent; that is X has rank p. However,
in some experimental design situations the elements of X are
chosen to be 0 or 1, and the columns of X may be linearly
dependent. In this case X 1is commonly called the design
matrix. Also, B is the p x 1 vector of parameters to be

estimated; and ¢ 1is the n X 1 vector of random errors.

Writing out the components of Y X8 + € yields




Y, Xio X33 Xz 00 Xy, po €,
Y, X X0 X -0 X0 1By €;
. - . " . ] » ] + . ) (1 . 2)
\Yn an xnl xn2 ' xap Bp €n
(nx1) (nxp!') (p'x1) (nx1)

The elements of a particular row, r, of X are the
coefficients of the corresponding parameters in B which give
E(Y,). The vectors Y and ¢ are random vectors; the elements of
these vectors are random variables. The matrix X is considered
to be a matrix of known constants. The vector 8 is a vector of
unknown constants and is to be estimated from the given data.

Using the above assumptions on ¢,, the random vector
¢ has a multivariate normal distribution with a mean of the
zero (0) vector. The variance-covariance matrix for any random
vector of n elements is defined as an n_x n symmetric matrix
with the diagonal elements equal to the variance of ¢, and the
off-diagonal elements equal to the covariance between ¢; and
€,. Let Z be a n x 1 vector of random variables z,, z,, 2;, ...
, Z

.: the variance-covariance matrix of Z 1is the following

n X n matrix.




var(z,) cov(z,,z,) ... cov(z,z,)
cov(z,,z,) var(z,) ... cov(z,z)
var(z) = v : U a3y
cov(z,, z,) cov(z, z,) ... var(z,)

The variance-covariance matrix of ¢ is I0%, and since
€ 1s independent and identically distributed, the distribution

of € 1s written in shorthand notation as

£~N(0, Io?),

where I is the n x n identity matrix and ¢? is the common
variance of all ¢,. Furthermore, since the elements of X and
B are constants, the XA term in the model is a set of
constants being added to the vector of random errors, ¢. Thus,
Y 1is a random vector with mean vector Xf and variarnce-

covariance matrix IgZ:

E(Y) =E(XB+e) =E(XPB) +E(e) =XP (1.4)

Var(Y) =Var (Xp+e) =Var(e) =Ic? (1.5)

var(Y) 1s the same as Var(¢) since adding a constant to a
random variable does not change the variance. When ¢ is
multivariate normally distributed, Y is also amultivariate

normally distributed. Thus,




Y~N(XB, Io?) (1.6)

This result is based on the assumption that the linear model

being used is the correct model [Ref. 2:.68].

2. The Normal Equations

Before considering the problem of estimating B, we
note that we are referring to the model (2), where X,, is not
necessarily constrained to be unity. In the case when X,; # 1
we have to use a notation in which i runs fron 0 to p-1 rather
than 1 to p. However, since the major application of the
theory is to the case X;, = 1, it is convenient to separate 8,
from the other f;'s right from the outset.

The oldest method of obtaining an estimate of B8 is the
method of least squares. It dates back at least to Gauss and
consists of minimizing Xief with respect to B (see Fig. 1);
that is, setting g = X8, we minimize €"¢! = |Y - g|? subject
to geR[{X] = W, where W is the range space of X {y:y=Xx for
some x)}. If we let q vary in W, |Y - gf? (the square of the
length of ¥ - g) will be a minimum for g = ¢ when (Y ~ ") is
orthogonal with W (see Fig. 1).

Thus XT(Y-g°) =0 (1.7)

or

1

We denote the transpose of a vector y by y!, and
similarly for a matrix transpose.




Figure 1. The method of least squares consists of finding
A such that AB is a minimum.

XTq* = X7y. (1.8)
Here ¢° is uniquely determined, being the unique orthogonal

projection of Y onto W. Now given that the columns of X are

linearly independent, there exists a unique vector (fi) such

that q" = Xf. Therefore substituting in (1.8) we have

XTx P =x7y (1.9)

the so-called normal equation(s). At this point we assume that

X has rank p, so X'™X is positive definite and therefore




nonsingular. If so, equation (1.9) has a unique solution,

namely,

B = (XTX) ! XTY (1.10)

Here f is called the ordinary least squares estimate of B.
Computational methods for calculating B are given in the
following chapters. Notice that f# can also be obtained by
writing
eTe=(Y-XP)T(Y-XB) = YTY-2BTXTY+BTXTXP
using the fact that B™X'Y = (B'x"Y)T = ¥'X8, and differentiating
€’¢ with respect to B. Thus from de’e¢ /38 = 0O we have
-2XTY+2X"Xp = 0
or
XTxp = X7Y.

This solution for B gives us a stationary value of €¢°¢, and
a simple algebraic identity confirms that f is a minimum
(Ref. 2].

The multiplication X’X generates a p' x p' matrix

where the diagonal elements are the sums of squares of each of
the independent variables and the off-diagonal elements are

the sums of products between independent variables. The

general form is




n Yx, Yx, ... Yx,
Yx, Y xi Yx.x, ... Yx.x,

xTx Yx., Y x.x, Yxi o0 Yxx, |- (211

il

Y X Y XX, Y XXy, - Y XL

Summation in all cases is over i = 1 to n, the n observations
in the data. When only one independent variable is involved,
XX consists of only the upper-left 2 x 2 matrix. Inspection

of the normal equations will reveal that the elements in this

2 x 2 matrix are the coefficients of f, and f,.

The elements of the matrix product X'Y are the sums of

products between each independent variable in turn and the

dependent variable:

Y v,
E:IQﬁn

EXuIQ (1.12)

XTY

E xipyi

The first element, lY,, is the sum of products between the
vectors of ones (the first column of X) and Y. As is mentioned
above, if only one independent variable is involved, X'y

consists of only the first two elements.

10




The fitted regression ¥ =x§, is denoted by
¥ ( =[(¥)]1), and the elements of
e=Y-Y=vxB = (I-X(XTX)*Xx")Y = (I,-P)Y, say,
are called the residuals. The minimum value of €¢’¢, namely,

(y-xp) T (v-xB)

e’e

YTy-2BTx Ty+BTx TxPB

YTY-pTxTy+BT X TXP-XTY]

= YvTYy-B’x 7y = YTY-B7x7x{, (1.13)

is called the residual sum of squares (RSS). Notice that ¥ and

e are uniquely defined by f.

C. VARIABLE SELECTION IN LEAST SQUARES ANALYSIS
The purpose of the least squares analysis will influence

the manner in which the model is constructed. Hocking [Ref. 4]

relates six potential uses of regression equations given by
Mallows [Ref. 3]:

B Providing a good description of the behavior of the
response variable

® Prediction of future responses and estimation of mean

responses

11




B Extrapolation, or prediction of responses outside the
range of the data

B Estimation of parameters

m Control of a process by varying levels of input

m Developing realistic models of the process.

Assume that the correct model involves t independent
variables but that a subset of p variables, chosen randomly or
on the basis of external information, is wused 1in the

regression equation. Let X, and B, denote submatrices of X and

B that relate to the p selected variables. B, will denote the

least squares estimates of B, obtained from the p-variate
subset model and MS(Res,) the mean squares residual obtained
from the p-variate subset model. After the above the following
properties are summarized:

B MS(Res,) is a positively biased estimate of 0% unless the
true regression coefficients for all deleted variables are

zero.

m f, is a biased estimate of B, and less variable than the

corresponding statistics obtained from the t-variate model
[Ref. 4].

Stepwise regression methods are variable selection methods
which identify good (although not necessarily the best) subset
models, with considerably less computing than required for all
possible regressions. The subset models are identified

sequentially by adding or deleting, depending on the method,

12




the one variable that has the greatest impact on the residual

sum of squares. These stepwise methods are not guaranteed tc
find the "best" subset for each subset size, and the results

produced by different methods may not agree with each other.

D. RESEARCH METHODOLOGY
Given the regression model Y = X8 + €, where X is n x p,
a number of computational techniques have being suggested for

solving the following steps:

®m Solve the normal equations XTx B = xTy.

m Calculate the residual e = Y-XJ.

® Calculate the residual sum of squares RSS = e’e.

® Update the regression model (that is, add or remove a
row of X).

@ Add or remove a regressor (that is, add or remove a
column of X.)

® Calculate an F-statistic for a general linear
hypothesis.

Solving the above steps is a common problem in a computer
laboratory. These problems arise in a variety of areas and in
a variety of contexts. Linear least squares problems are

particularly difficult to solve because they frequently

involve large quantities of data, and they are frequently ill-




conditioned’. The research methodology will be to describe
acceptable procedures for updating regressions. The procedures
to be chosen should be economically attractive and numerically
accurate, in the case that the number of observations in the
regression is large compared to the number of variables in the
regression model. Each of these procedures (algorithms) has

advantages and disadvantages which will be explained below.

E. THESIS ORGANIZATION
1. General

The main purpose of this thesis is to bring to the
attention of readers numerically acceptable procedures for
adding and deleting rows and columns from a regression model.
For the case of a single row to be inserted or deleted, the
algorithms use simple techniques: plane or hyperbolic
rotations and the Gram-Schmidt process. The algorithms for
inserting rows are stable, but the problem of deleting a row
may be ill-conditioned and some algorithms for this process
may be numerically unstable.

The need for updating regression results arises for

various statistical or numerical reasons. When data are

A set of linear equations Bx = c is said to be ill-
conditioned if small errors or variations in the elements of
B and ¢ have a large effect on the solution x.

14




arriving sequentially, it may be undesirable or impossible to
walit for all the data before obtaining some regression
results. In various time-series problems, one is interested in
the changing relationships between variables. A regression
model with a fixed number of lagged terms, as it moves over a
series of data, generates a "window" on the sample, with a new
observation added, and an old one deleted®, as the window

moves to the next point in the series [Ref. 5].

2. Basic Schedule

The procedures for updating regressions that we shall
discuss here are the following:

B An algorithm based on the normal equations
(Efroymson M. A., 1960[Ref. 6], Draper N. and Smith
H., 1966 [Ref. 7]); this had been the standard
introductory approach in regression courses. In this algorithm
the regression coefficients are solved using Gauss-Jordan
elimination on the normal equations. Howaver, the probla=m of
solving the normal equations is frequently much more ill-
conditioned than the original problem of solving the
overdetermined linear equations.

B Stepwise regression analysis with orthogonal

transformations (Lars Elden 1972) [Ref. 8]. In this

’But in this case the problem can be ill-conditioned,
because the rank can be decreased by this operation.

15




algorithm a method is presented using QR-decomposition. In the
QR-decomposition or factorization, we express a matrix as a
product of an orthogonal matrix Q and an upper trapezoidal
matrix R (actually R stands for right trapezoidal). Many of
the ideas used in this method have been proposed by Golub
(1965) [Ref. 9].

@ The modified Gram-Schmidt triangular factorization
(W. Gragg, R. Leveque, J. Trangenstein 1978)
[Ref. 10]. This approach 1is A = QR factorization with
Q having orthonormal columns and R upper triangular. In this
algorithm one is able to add or drop regressors (columns of A)
or observations (rows of A) using essentially only the storage
needed for A and to secure numerical accuracy possibly at the
expense of additional computation and storage.

B8 Rank revealing QR-factorization (T. Chan, Hansen
1986). In this algorithm a method is presented for computing
a column permutation, II*, and a QR factorization, AIl = QR, of
an n by m (n » m) matrix A such that a possible rank
deficiency’ of A will be revealed in the triangular factor R
having a small lower right block. Notice that a matrix A is

rank deficient with rank deficiency d if it has at least d

‘Il is a permutation matrix where IIeR™™ and is the product
of P,P,...P,.;. Notice that P, denotes the matrix representation
of the column interchange that precedes step 1i.

This means that the columns of the observation matrix A
are not linearly independent.

16




singular values. For matrices of low rank deficiency, the
algorithm can reveal the rank of A, and the cost is only
slightly more than the cost of one regular QR factorization.

A posteriori upper and lower bounds on the singular values®

of A can be used to infer the numerical rank of A.

In Chapter I1II we discuss the general theory about
updating regressions. A process for adding and dropping
regressors follows. Techniques are presented with stepwise
regression in mind, and we discuss how to compute the various
quantities of statistical interest using the algorithms.

Chapter III mainly covers computational details of the
algorithms, which are wused to compute the regression
coefficients. In this chapter also a simulation is applied to
the basic algorithms for validating the models by creating
useful numerical results. In the same chapter we discuss the
measures of effectiveness of each model based on the
previously generated numerical results. Chapter IV concludes

the thesis and offers recommendations.

®*The singular values of a matrix A are the "diagonal
elements" of S, one of the three component matrices that A
splitted to avoid singularity.

17




II. BACKGROUND THEORY

A. GENERAL THEORY FOR FITTING A SPECIFIED REGRESSION
Several techniques can be used to solve the problem of
updating regressions. Efroymson's algorithm [Ref. 6] is one of
the earlier ones used. It uses the method of Gauss-Jordan
elimination on the normal equations ATAx = Ab. A more
efficient algorithm is to use the Cholesky factorization of
the Gram matrix ATA into R'™R where R is upper triangular. The
solution to the original system is then found by a two step

triangular solve process:

RTy = A7h, Rx =y = ATAx =RTy =A7Th.

Another way to solve the above problem utilizes orthogonal
transformations. This approach, called QR factorization, is
the basis of the thesis algorithms and may be slightly slower
than the normal equation approach, but is more stable
numerically. The QR factorization of a matrix can be computed
using the following methods:

B Classical Gram-Schmidt (CGM).

B Modified Gram-Schmidt (MGS).

B Givens rotations.

B Householder reflection (Elden's algorithm).

18




B QR with Column Pivoting for the Rank Deficiency case
(Chan's algorithm).

B Daniel-Gragg-Kaufman-Stewart method (Gragg-Leveque-
Trangenstein's algorithm).
The latter algorithm uses rotations and the Gram-Schmidt
process with reorthogonalization.

Applying the QR technique on a square nonsingular system
Ax = b we have (QR)x = b and by the associative law of matrix
multiplication Q(Rx) = b. Defining y = Rx, it follows that Qy
= b. Hence, Ax = b is solved in two steps:

1. Solve Qy = b for the unknown y.

2. Solve Rx = y for the unknown x.
The second system is solved by back substitution. The first
system is easy to solve since Q is orthogonal. Multiplying Qy
= b by QT yields Q0 = Q'b. Since Q is orthogonal, 0’0 = I and
y = Q™. When A has more rows than columns and is of full rank
the above process yields the solution of the least squares
problem |b - Ax},>? = minimum. The key to the numerical
stability is the orthonormality of the columns of Q. To avoid
loss of orthogonality Gragg-Leveque-Trangenstein's algorithm
applies reorthogonalization whenever |u}/[|ull is small (say,
less than J/2/2), where u and u 1s the vector to be
orthogonalized and its orthogonal projection, respectively.

Finally if A is rank deficient then the QR factorization

need not give a basis for range(A). This problem can be

19




corrected, as mentioned below, by computing the QR
factorization of the column pivoted version of A, All = QR
where Il is a permutation, and applying Chan's rank revealing
scheme.

In the least square problem, statisticians and numerical
analysts use different notations for the same entities, i.e.,
the matrix of the observations of independent variables, the
vector of the dependent variables, the vector of random
errors, etc. To avoid misunderstandings caused by using both
notations in the following chapters, we built the following
TABLE I of notational correspondents.

Most numerical analysts use n to represent columns of a
matrix and m to represent rows. Ot*- : interchanges m and n,

and we will use this notat.i~i.
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TABLE I
NOTATIONS USED IN REGRESSION ANALYSIS
DESCRIPTION STATISTITIANS | N. ANALYSTS
Independent var. matrix X A
Dependent var. col. vector y b
Vector of parameters to be B X
estimated
Rows of indep. var. matrix n n
Cols of indep. var. matrix P m
Vector of random errors € r
Unigue solution to the § x
normal equation
The vector of estimated % p’
means of the dep. var.
The idempotent n x n matrix P QQ°
The residuals vectoer e  of
Residual sum of squares SS(Res) r’'r
Signific. level enter/stay Fo/® v

'The numerical analysts describe the vector p = Ax = b-r,
as the "orthoprojector onto R(A)".
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B. METHODS FOR UPDATING REGRESSIONS

Before starting this section, let us introduce some
terminology. The upper case letters denote matrices, lower
case letters denote vectors, and Greek letters denote scalars.

Thus we write

Laat
"
[

£\ (B, By} (n, @iy »0v &y, E1n

x=p . (4. [, b=y .| ., a=x4 . ... 4. ... .| (2.1

Ep pp pp np anl fre am) Enl e Enn

following the notational correspondents of TABLE I. For
notational convenience we set x = [ = b and the normal

equations can now be written Xb = y or Ax = b.

1. Lars Elden (1960)
In Elden's algorithm the upper triangular matrix R in
the QR-decomposition of A (in the model Ax = b) is determined
by successive Householder transformations so that after k

steps A has the form

R(k) : T(k) } k
PP, ... PRX=|0 : a'l: A% n-k
(k) (1) (n-k-1)

R® is upper triangular and T%® is k x (m - k). Furthermore,

P, = I—ZW;qwfh, where W,,; with Jw,,,l; =1 is now chosen so
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that k first rows are left unchanged and

° )
| = Aey, where |A| = lagil, .
k+1

Pk+1

After m steps X will be completely triangularized:

R
PP,y «» BA=| |

In stepwise regression analysis, however, the final
result may be of the form

(2.2)

7' rR®
Q°A = ( 0 A(p))'

where R®’ 1is an wupper triangular pP_X p matrix. The
corresponding right hand side and the residual vector are:

Posd (p) 0
T = " =
Q'y (d“”y and r (d“”)

The regression coefficients are calculated from the
system R®b = c®, In most cases the column vectors of X are
not added to the subspace in the natural order, so that only
after a permutation of columns is Q'A of the form shown in

equation (2.2).

a. Choice of Vector for Enlarging the Subspace.

We shall add to the subspace the vector that will

make the norm of the residual vector decrease as much as
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possible. Since only the m - k last rows of the matrix are
changed in the kth step we can without loss of generality
restrict ourselves to considering the first step of the
analysis. We have the linear system of equations Ax = b, with
A and b as in (2.1). Let a, = (ay;, @, ..., @,)7 denote the
jth column vector of A. We shall multiply (A4 : b) by an
orthogonal matrix P = I - 2ww', where |w|,® = 1, so that for
some j we have Pa; = ae;, where |A| = |a;|,. After this
transformation the residual vector is given by the last n - 1
components of Pb and since we were to decrease the norm of the
residual vector as much as possible, j shall be chosen so that
the first component (Pb); of Pb will be as large as possible.
Now we have (Pb), = (Pb)Te, = (Pb)™Ae,/A = b'P'Pa;/A = b'a /).
Thus we shall select j so that the quantity

(bTa,)?
lajlzz

will be as large as possible [Ref. 9].

b. Choice of Vector for Diminishing the Subspace.

Suppose that after a number of steps (A : b) has the

form

®*The Euclidean length of a vector is often denoted |x|,,
also called the 2-norm, since the components of x are raised
to the second power.

Ixll, = \/x12+x22+. S
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(%) (k) (%)
(R D c ) (2.3)

0 A gk
where R®’ is an upper triangular (k x k) matrix. Let r, = (p,,
P2or +++ 1Pgpsr O, -.. , 0)" denote the pth column vector of R,.
Now 1f the jth column vector of A is removed we can by

successive rotations in the (j, j+1), (j+1, j+2),...,(k-1, k)

planes transform R, to triangular form apart from the jth
column. That is, we compute the coordinates of the remaining

column vectors of A in the orthonormal basis where the jth

base vector has been excluded.

8,) . Co
Let Q;}q denote the orthogonal rotation matrix in

the (j, j+1) plane which deviates from the unit matrix only in
the elements d;; = qj.; ;+1 = €088 and q; ;s; = -Qj.,; = sinB;. If

9J is chosen so that

cosBJ= Pi,34 , Binﬂj= Pyi1,94
2 o2 2 2
\/PJ.M Py+1,34 \/PJ,m*Pm,Ju
(8,) (8,
we get, Q1. 7a%501 = Q4,7:1(Py, 3us + + « Py, 3027 Pyag, 32s Or o 0/ 0) T =

/
= (pllj’ll [ ) ’pj‘l,j’l' pj’j¢1,0,o, L] ,O)T, Where

/ 3 3
P1,941 = \/Pj.jq*Pju,ju .
Further we have

8, / /
Q5,02 £y = (Py,greeerPyy,30P3,9sP301,300s 0407
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where p'; , = cosB; p,; and p'yy ; =

-sinB; p, ;. After k - j - 1

rotation we have transformed R, to the form

Pix =+ + Pi,31 Pi.y Pi,ye2 = « + Pix
Py-1,9-12 Pya,3 Pya,3a + + + Pjax
/ / !
R® = o R™® = P31 Py.gea » « « Pix
. 0 . .
/
. . ¢« Pkx-1.x
/
pk,] 0 . s
(8y.y) (e,
where Q, = Qrr.xr+e+1Q4, {01
The preceding can be illustrated by the following schematic
example (k = 5, 3 = 3)
XXXxXXX XXX XX X XXX X
x x x x| retation X x x x| rotation XX X X
on (3,4) on (4,5)
R = X XxXx - XX Xx = Xx x
x X + Ox x x
x x + 0O
where X = any nonzero element, + = nonzero element being

introduced, O = element being annihilated.

the inverse R7T = X' we

To update transposed

multiply by the same rotation matrices from the left as in the

following schematic example.
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X x 4
rotation rotation
X X rx x X X
r on (3,4) cn (4,5)
XT=|lxx2x - xx 0O + = X X X
XXX X XX x X xx0Ox +
XXXXX XX X XX XX X X X

Since RJ” can be transformed to triangular form by permuting

its columns, it is easy to see that (Ro“")'1 will be triangular

if the same permutation is performed on its rows. Therefore

the jth column of Q,(R™)" = (R,®”) 7 has only one nonzero
element. Let x, = (0, ..., 0, §,, ..., €,)7 denote the jth
column vector of (R™’)7F. Then Q,x; = le,. Since |x,}, = [Qx,}
we have |A] = [ X, ,. The right hand side of (2.3) is multiplied

by Q, and as the dimension of the subspace is decreased the
increase of the norm of the residual vector will come from the

last component (Q.c™®’), of Q.c‘®, But

T TAT T k
(Q)‘c ) '3 ex ch - 1 = A - Y

Thus in each step we have to find for which value of j

(xfc (X) )2

Y
1%

is minimal, and if for this j the increase of the norm of the
residual vector is not significant the jth column vector of X
is removed from the subspace (the variable x, is deleted from

the regression).
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c. Inserting a Row (Observation).

In some applications it may be desirable to insert
a row to the matrix of observations after the analysis is
finished and study what influence that row can have on the
regression coefficients. This can be done without having to
start from the beginning again using the QR-factorization that
has already been done. The procedure can be illustrated by the

following somewhat simplified example. Suppose we have the

system of equations Rx = c, where
Piy Paz + + + Pig Y,
Pz = + + Paj Y2
R = , € =
pn.n Yn

The system is augmented by a row (an observation):

P11 Pz =+ + + Pig Y:
P2z + + + Pap Y2
RO = , cO =
pnn Yn
an‘l,l an01.2 ¢ v an»l,n pnu

If we multiply (R, | ~;] by a rotation matrix Q,,.,; (68,) in the

(1, n+l) plane where 8, is chosen so that
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_ [7____—_
cos 8, = p;, / \/P11*84.,, ’ gin 6,
we obtain
(1) (1)
P11 Paiz .
P2z
(1) _ (8,) _
Ro - 1,1:»1 Rc -
(1)
0 agii,2 -

where

(1) _
pi,y =cos 8 p, ;+38in 8, a,, ,

(1)

(1)
Pin

P2n

Pan

(1)
ap.1,

n

_ 3 2
= 8p,q,1 / YP11%+8n.1,1

j=1,.-.,n

n+1),

(1)
+ Pia

(2)
+ Pan

(n)
Pan

a,,,,; = sin 8, p, , + cos 8, a,,, , J=2,...,n.

After n successive rotations in the (1, n+1), (2,

(n, n+l) planes
(
P1i) Pg) .o
{
Pzg) .
RO(D) = Qn,nd (en) e Ql,ntl (61) Ro = .
0 0 .

c. has been transformed:

(n)

Co = (en) 7oy IQl,no1 (81) cO =

a,n+l

Now we have the system R,™ x = (c,;'?¥,

29

(2)
C2 ’

. o,

c{™)T

e e ey

1) 2 {
(¢, cf®,....ci?,piihHrT




(the component b,,." belongs to the residual vector).

d. Removing a Row (Observation).

Sometimes 1t may be desirable to remove a row of
the matrix of observations after the solution has been
obtained. This can be done in a very simple manner without the
analysis having to be done from the beginning again. Suppose

that the matrix A of observation has been decomposed:

R c
T o
A = , b = (2.4)
oia =[5 . o= (]
Let a, (¥ = 1,...,m) denote the row vectors of X. Then the
normal equat . s of the system Ax = b can be written in the

following “orm:

If a, is the row of A that is going to be removed, let

R
S =[ where 1% = -1.
P/

Then S S = R R - a,; a, = R QJ Q, R - a' a, =

I
>
i

]
oV

ol '3
o
il
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It is easy to see that if the vector c in (2.4) is augmented
by a component ibf, the corresponding right hand side of the

normal equation will be

m
a’b

v-1l, V#p

v*

s can be brought to triangular form by successive
multiplications by matrices T a1y Tz neas «ee,;Tann Wwhere T, .,; is
not unitary but complex orthogonal (T,,ml2 = I). Consider the

first step:

Let
P11 la,,
1 0
Ty ,a1 = —1 . X (2.5)
‘ 2 2
Y P11 ®ps .
‘ 0 1
iapl P11
Then
/ / /
P11 Piz + + + Pin
Pzz * + + Pan
TLnﬂ 8 = . .
Pan
! !
0 lap; . - . dap,
where
31




I (pnp:.j—aplapj) 9 =

Py
p) P
Y P11~ Qp;

/ 1 (aplplj—p1lxpj)

a =
»d 2 2
yP11~&p;s

After n transformations S has been brought to the form
R
( 0 ) ’
and the right hand side to the form
e
ans)

where we denote with double prime (") the final components of

I
[
-
]

1=2,...,n.

the normal equations. Then we have the system R"z = c' to

solve. Notice that the component ib: belongs to the residual

vector. The hyperbolic rotations that are used to update the

regression coefficient by working only on the matrix R are not

unitary. Non-unitary transformations can destroy numerical

stability.

2. Gragg-Leveque-Trangenstein (1978)

These algorithms are based on the use of (orthogonal)

plane rotations and the modified Gram-Schmidt process with
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reorthogonalization. We compute the following quantities of
interest 1in a regression analysis, with stepwise regression:

B The least squares coeificients b,

# The residuals r = y - Xb,

m The ANOVA table?®,

@ The <covariance matrix for the regression
coefficients, and

m Partial F-tests for the significance of a given

variable in the regression.

a. Stepwise Regression: Adding and Deleting

Regressors

Let us have entered k - 1 columns of X 1in the
model y = Xb, and we wish to add the next column. This means
that we want to find a kX x k matrix Q, whose columns form an
orthonormal basis for the span of the k columns of X, assuming
that Q,., is known. The remaining columns of X are regressed
upon the first k columns. Let R, be a k x k triangular matrix
which maps the orthonormal basis into the original basis. Also
r, is the orthogonal projection of the vector y of dependent
variable onto the space orthogonal to the space of the first
k columns. In other words, r, is the residual vector.

Mathematically, with kX - 1 columns entered, we have factored:

*Here, the residual sum of squares is computed directly,
and not by subtracting the sum of squares due to regression
from the total sum of squares.
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Ry 1 Tpy Cra
X y|= Q1 Ar1 Txa| O I o (2.6)
oT of

where Q,; 1s n x ‘k-1) and
Q1 = I (2.7)
also the columns of A; ; and r,; are orthogonal to the columns

of Q,,. This means that

Qk-1 TAk—l =0, Ox-1 Trk_l =0; (2.8)

Also Ry, 1s (k-1) x (k-1) upper triangular; and

Cr1=Q, Y- (2.9)

The above procedure was a step of the Gram-Schmidt
process that can be viewed as a partial QR factorization.
Although there are some similarities between the Gram-Schmidt
factorization and Householder's factorization, there are also
some important differences. We are going to discuss that in
the next chapter during the comparison process.

To update the above factorization (i.e., entering
the kth column or, in other words, to add the kth variable),
we perform the following steps:

@ Repartition:
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Ry, 8y Ty Cxy

0T 1 0T o (2.10)
0 0O I O

0T o oT 1

X y|=Q. 8 A Iy

@ Normalization, and the equation (2.10) becomes:

Ry, 8 Ty Cy

-~ T T
Qs —a, A, ., |9 &40 O
124 0 0 I o©

o o o 1

m Orthogonalization, with (qx = a/lal), to
obtain:
Rey 8y Ty Cr-1
= ~ o7 |a TA Tr
Q-r Tk A Gl TA)) Iy~ (@ T y) e R
o 0 I 0
o o of 1

®m Relabel, so that the equation (2.10) can be

written as:

R, T, ¢,
Or Ax IO T O
oT o7 1
The above mathematical statements complete the
insertion of the kth regressor. Furthermore the work required
is essentially 2n(p - k) multiplications and additions. The

storage space required and the part of storage affected by the

algcerithm is illustrated by these partitioned matrices.
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Suppose now that we have to enter the kth variable
(celumn) into the model. In this case the appropriate column
to be added is the one which minimizes the norm of the
residuals. We have that Q' = 0 and from the

orthogonalization and relabel steps, that
Ty = Ly Gl @ re,) or Iy = 5 (@ n ) g,

By the Pythagorean theorem,

1Zeaal® = |Td? = (@Tpy)? (2.11)
so when we add the kth variable to the model the change in the
residual is (q,'r,-;)?. Recalling that qy = a,%/|a,|, the change
can be expressed as (q'ry;)? = (a,'ry,/la.])?. So the chosen
column to add at the kth stage is a column a;, k<j<p, for
which |a;'r,;|/la;l is maximal. A test for significance should
be satisfied for the above column to be entered into the
regression. The work for choosing the column to add is on the
order of 2n(p - k) multiplications and additions.

To compute the regression coefficients we have to
follow the next steps. A n x k matrix X, is formed by the
first k columns of X. It has been factored X; = QR,, where Q,
is n x k with orthonormal columns, and R, is upper triangular.

The projection of y onto the range of X can be written as:

Y I, = ,C, = Xb, = QR,D,.
So the regression coefficient b, can be computed easily by

solving the following triangular system
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Ryby = C4,
reguiring an order of 0.5k?® multiplications and additions.
The next step is the computation of the total sum
of squares |y[?. A smart mathematical computation is taking
place here. After computing the sum of squares due to the

regression at the kth stage of the regression, as:

Kbd® = |QRibA® = R = e’

since ¢ 1s a k-vector, the residual sum of squares is
computed directly as |r.]?, rather than by subtraction which
would mean a loss of accuracy due to cancellation. This is
recommended, especially if the mean residual sum of squares is
to be used in sensitive tests for significance levels. The
common criterion for terminating the selection process is the
ratio of the reduction in residual sum of squares caused by
the next candidate variable to be considered to the residual
mean square from the model including that variable. This
criterion can be expressed in terms of a critical "F-to-enter"
or in terms of a critical "significance level to enter" (SLE),
where F is the "F-test" of the partial sum of squares of the
variable being considered. We can compute the "F-to-enter",
Fe, for the kth variable by using the residual sum of squares
before and after the insertion as in (2.6). ©Let RSS,, =

(ro-)T(ry,,) and RSS, = (r,)'(r;) be respectively the residual

sum of squares after each variable addition. Also let (n - m)
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be the degrees of freedom for the last model, where n and m
are the numbers of rows and the columns of the current matrix
X of the independent variables. After the above, the "F-to-
enter" is

RSS,, - R3S,

Fe = Rss/(a-m

To compute the covariance matrix of the regression
coefficients b, using the normal equations, (X.'X,)! usually is
computed. For avoiding this numerically unstable process, a
new procedure is followed in this algorithm. Using the above

orthogonal decomposition, it is found that:

(X,7%) 7 = (R, T(R,T),

where Ry; = (R')T = (R,) !. The approach of the algorithm is
to solve R/, = I, and compute (X,’X;)! as V,'V,. Hence, V, is

updated as follows:

(I 0) Bral 0 . i RV,
= 1 1= .
0T 1 T ey l“-—rkrvk-x Tal ko

124 124

Thus, V, differs from V,, only in the bordering of a new row
and column. The above updating of V, is mathematically
equivalent to forwardsolving RV, = I directly. Notice that

the computation of variances (i.e., the diagonal of the
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covariance matrix) of the b, requires only on the order of k2
multiplications and additions. The variances of b, are needed
for significance tests (i.e., t-test and F-test).
Having entered k variables (columns) into the
regression, we have the following factorization:
R, Ty c,
Xy|={Qx Ax IO T o
o7 o 1
(k) (p-k) (1)
where Q, is n _x k with orthonormal columns, R is k_x Kk upper

triangular, and

Qr, =0, QA =0, ¢, =0y (2.12)

Now, to delete the jth regressor, where 1 < j < k, the next
steps are followed. The columns of X are permuted, so that for

some permutation matrix P,

Ry 1,10 Re,1,2) 84,1 Tk,1 Cxa

0 R 8 T, c

x y P = Qk Ak ‘rk k, (2,2) _1,2 k,2 k,2
0 0 0 I o (2.13)
oT oT 0 0 1

(7-1) (k-7) (1) (p-k) (1)

For Xk = 6 and jJ = 3, the right-hand factor looks like the

following:
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XX XXX X
X xxx x
Re, (1,10 Re, 1,2 81,1] xxx x
O Ry, 812) xxx '
x x
x

where x's denote possible nonzeros, and zeros are left blank.
After that, by using a Givens transformation or (rotation),
the subdiagonal of this matrix 1is annihilated. A Givens

rotation is any orthogonal matrix of the form

I

Jk =
- Gk‘l,k' LI 'Gj,j’l

1

(1=1) (k=j+1) (n-k) (1)

where G; is of the form

YyO0.. .0 o
01 ]
0 1 0
g 0 » » 0 -¥

The ] and k subscript in G;, correspond to the row numbers
associated with the 7v's: The first ¥ is in row k and the
second v is in row j. Next the equation (2.13) is partitioned

and after using the orthogonality of Givens rotations and
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performing multiplications, the following equation 1is

obtained:

Re.i,uy Re,ay 811 Trn Cxa
Y GRy, (2,2) G8y,; GTy,; GCy,,
(o] o 0 I (0]
oT oT 0 o? 1

Q.1 @k GT Ay I, (2.14)

4

Furthermore (2.14) is repartitioned and relabeled to get its

last shape:

Ry, T, Cr-1
Q-1 Ay T2 O I 0
oT oT 1

(k-1) (p-k+1) (1) (k-1) (p-k+1) (1)

Note that (2.14) holds with k replaced by k - 1 and that the
deleted column is ready to reenter the regression at any time.

The above algorithm uses approximately n(p+2k-31i)

multiplications and additions.

However, the chosen column to drop is that one
which yields the smallest increase in the residuals. This
increase for the jth independent variable is [B,]|% |v,|2, where
B, is the jth regression coefficient, and [v,|? is the jth
diagonal element of (X,'X,) !. Thus the column to be dropped, if
a test for lack of significance is satisfied, is the column j

for which |B8,|/ lv,i is smallest.
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b. Adding and Deleting Observations

Now n rows of X have entered into the regression,
and an additional row x' and observation n of y is going to be

inserted. In this situation, a factorization has taken place

and we have:

xn yﬂ Qﬂ o rn Rﬂ cﬂ
o+l y°+1 = = XT n 1

xT n 0T 1 o/loT 1

where Q, is n _x p with orthonormal columns, R, is p_X p upper

triangular, also

070, = I and p X p, QTr, = 0, and ¢, = Q. Y, (2.15)

Furthermore the Givens rotations are applied and after

relabeling, repartitioning and performing some elementary

operations we get the following:

Rn«l cn»l
0T 1 )

[QM F+yq

Notice that (2.15) holds with n replaced by n + 1 and that the

above algorithm requires n + 1 additional storage locations

for q. However, we can easily update V = RT, since
Vﬂ
IanTVnz(Rnr X) 0 ’

and we apply the Givens rotations to get:

42




T
Vot -

= R

o+l

Va.
(Rn*lr 0)( ::!'1

Vn
I=(R," X)G"
o
Now we want to delete the jth observation. Then if
x' is the jth row of X, n is the jth entry of y, qf is the jth

row of Q, and p is the jth entry of r, a permutation matrix P

can be obtained such that:

xn-l yn—l Rn cn
P{X, ¥, = =|P|Q, I,
xT o7 1
R, C
-~ f R c _ ] n
R EMREEE
g’ p g% 1 plor

Next, we apply the Gram-Schmidt process. After this we have:

1 -
w=0=(1-q7q) ?, og=-0q, ¥=@"#, r,,=f-%§:

when ¢ = 0, (§%7,w) 1is chosen by a special feature of the

orthogonalization code. Now if we use this orthogcnalization,

we get:
I g 0)R, Cy R, c,
Xoy Yau|=|{ @ @ 2,07 0 FlloT 0| ={ @ & Z,, 07 §|. (2.16)
xT n gTw p NOT O 1/loT 1 gTw p o7 1

Next we choose Givens transformations such that, (qf, ©)GT =
(9", ©)G, pr1---Gypn = (07, 7). Since [ (g%, w)] = 1, it follows

that 7 = 1. So the equation (2.16) can be written as:
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GT 0)G 2\/R, &,
Xo 1 Yau| =| 0 & 2, oF ¥
xT n g’ ® p NOT 1)o7 1{0’ 1
Rﬂ-l cﬂ‘l
= |Qp1 O Toy|l 8T y |. (2.17)
oT t p o7 1

because the matrix

i

ar 2"

Q.., q
g’ o7 ¢

has orthonormal columns it follows q* = 0 and because we have:
R R R, _
G 0:) = Gy pu Gy pn [o:) = (:;)

where R,, is an upper triangular matrix. However from the

equation (2.17) above, we obtain the desired factorization

which is:

( ) =( )[Rn-1 cn—l)
Xn—l yn-l Qn~1 rn—l 0” 1 ’

and we can recover the dropped row by:

xT =187, Nn=1y +p.

Finally, we have to update V = RT. Now,
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\ %4
I 0) R,TO a
0T 1 gt /-

R,,7 8| Vo V _ Ry TV, *80™ R, ,Tv+s
0 thvT v '

TV

Since 7 = *1, it follows that v" = 0. Hence R, ;'V,; = I, and

V,, is the desired update [Ref. 10].

3. Tony F. Chan (1986)

An algorithm is presented for computing a column
permutation [l and a QR factorization All = QR of an n by m (n
> m) matrix A such that a possible rank deficiency of A will
be revealed in the triangular factor R having a small lower
right block. For matrices of 1low rank deficiency, the
algorithm reveals the rank of A, and the cost is only slightly
more than the cost of one regular QR factorization. An upper
and lower bound on the singular values of A are stated. These
can be used to infer the numerical rank of A.

A very useful factorization of an n by m (n > m)
matrix is the QR factorization, given by All = QR, where [[eR™™
is a permutation matrix, Q€eR™ has orthogonal columns and
satisfies Q'Q = I_,, and RER™ is upper triangular.

If A has full rank, then R is nonsingular. In many
applications in which A 1is nearly rank deficient, it is

desirable to select the permutation so that the rank
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deficiency is exhibited in R having a small lower right block.

For if R is partioned as

R =

Ry, Ry,
0 Ry

where R,, 1is d by d, then it 1is easy to show that
6, ...(A) < IR,,|;, where we have used the notation 0; to denote
the ith singular value of A, with o0, > o, > ... > o0,.

Therefore, if |[R,,l; is small, then A has at least d smail

singular values and thus is close to being rank d deficient.
The converse, unfortunately, is not true. In other words, if

A has d small singular values, then it is not guaranteed that

a given QR factorization of A has a small |R,,l,. Leta,e Ro=

be the matrix of order n illustrated below:

1 ¢ ¢. .. -¢c
6 1 -—(¢. .. -c
. . ’ ~C

A =diag(1,s,s?,...,8%1) .
o . . 00 1

where s and c satisfy s+ ¢® = 1. For n = 50, ¢ = 0.2, we have

o,(A)) = 10*. On the other hand, A, is its own QR factorization

and obviously has no small R,, block for any value of d.
Besides being able to reveal rank deficiency of A, a

QR factorization with a small R,, block is very useful in many

applications, such as in the rank deficient least squares
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problem and in the subset selection problem. Therefore a
variety of technigques have been proposed to compute it. Since
QR factorization is essentially unique once the _ .»mucation Il
1s fixed, these techniques all amount to finding an
appropriate column permutaticn of A. Perhaps th~- lest known of
these is the column pivoting strategy. Although this strategy
is usually very effective in producing a triangular factor R
with small [R,,!, very 1little is known in theory about its
behavior, and it can fail on some matrices. Chan's algorithm
does not require computing the SVD of A and is most closely
related to one recently developed by Foster

[Ref. 11].

a. Revealing Rank One Deficiency

Assume that A 1is nearly rank one deficient. We
would like to find a column permutation of A such that the
resulting QR factorization has a small pivotal element r_ . It
turns out that this permutation can be found by inspecting the
size of the elements of the singular vector of A corresponding
to the smallest singular value g,. This procedure was first
pointed out in 1976 [Ref. 12].

Assume that there is a vector x € R" with [x]|, = 1
such that [Ax", = ¢, and let Il be a permutation such that if

I'x =y, then [n,] = lyl. and |ly], = Ixl, = 1. Such a x can be
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obtained by the LINPACKY condition ~stimator. Now, because

of these we have |n,| > VI/n and furthermore

0TAx = QTAII II'x = Ry =
PnoMy

Therefore,
e = |axl;, = 107ax];, = IR ¥l, = Ipyn.l
from which we have the result, lp,|l < vn €. Now let v € R® with|v,] = 1

be the right singular vector of 2 corresponding to the

smallest singular value 0,. Then we have

lavl, = ¢

a-
Therefore, by the above, if we define the permutation II by
I(HTV) In = Ivlul

then All has a QR factorization with a pivot p, , at least as
small as yno, in absolute value.

Since only the permutation II is needed, it is not
necessary to compute the SVL of A in order to find v exactly.
In practice, one can use a few steps of inverse iteration to

compute an approximation to v from which the permutation Il can

be determined. In the more interesting case where o,<0,,, the

"Together, LINPACK and EISPACK represent the state of the
art in software for matrix computation.
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inverse iteration should converge rapidly. This suggests a two
pass algorithm in which one first computes any QR
factorization of A, then performs inverse iteration with R to
find an approximate v, then determines II, and then computes

the QR factorization of All.

b. Revealing Higher Dimensional Rank Deficiency.

In this section, we consider the case where A is
nearly d deficient, with 4 > 1. Our goal is to find a

permutation [ such that if

Ry, Rn)

AH==QREEQ(
0 Ry

is the QR factorization of All, with R,, € R*™, then [R,]l is

small in some norm.

A natural way to extend the one dimensional result
of subsection a is to repeatedly apply the one dimensicnal
algorithm, for 4 = 1,2,...,R;;, the 1leading principal
triangular part of R. Suppose that we have already isolated a
small d x d block R,,. To isolate a small (d+1) x (d+1l) block,

we compute, using the one dimensional algorithm given in

subsection a, a permutation P such that R,P = Q R, is the QR

factorization of R,;P and where the (n-d, n-d)th element ofR

is small. Then with
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HEH(p o),
oI

where, P is a permutation matrix such that P € R¥*,

|(PTv),| = IPTv]l. and the singular vector v € R' corresponding

to 0..,(Ry;) with Jvj, = 1, and §; = 0,;,(R;;), also

. (9, 0©
Q_o(o I)'

After the above, it can be easily verified that

> T
Aﬁ = 5 (Ru Ql Ru)
0 R,

is the OR factorization of All.

To make the above procedure more understandable,
the updating process is illustrated for n = 5 and i = 2. The
permutation is defined by moving the second column of R to the

last column. Thus

X X x X X
X X X X
RO, =| L x x +|
0, x +
D3+
where again, x = any nonzero element, + = nonzero element

being introduced and O = element being annihilated. So working

from the left in planes (i,i+1), (i+1,i+2), ... , (n-1,n) we
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annihilate the subdiagonal of RIl; by rotations. Simultaneously

we compute @ = QQ,. The computation 1 =P, is trivial, 1like

that of RI,. If 0,,,(R;;) is "tiny" then we have for n = 5,

X XX X X

XX X X

~ o ~ X X X
A=0RNI¥ =0 )1

X X

€

with € also tiny. If € is negligible we may drop the last row

of R and the last column of J to get

x x x x O,
xxx L __
x x [1, h

x 0O

>
I

with {0 having orthonormal columns. Now if we annihilate the

last column of the upper trapezoidal matrix, as before, from

the bottom to top, and then drop the last columns of the II and
R matrices, we obtain A = OR II¥.

The above algorithm, to produce the desired QR
factorization, is based on the following two assertions for i
= n, n-1, ..., n-d+1l:

= R,, has a small singular value so that the (i,i)th

element of R, is guaranteed to be small.
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* The last [i.e., the (n-i)th] row of @R, is

small.

If these two assertions are true, then the lower
(n-i+1) x (n-i+1) block of R is small and we have the desired
QR factorization. But these two assertions are true because of
the following lemmas proved in [Ref. 13].

Let B € R™ be a matrix containing any subset of k

columns of A. Then

Onin(B) = 0,(B) < o,(A).

Also if the matrix W = [w, ,;,...,W,] € R* has been
computed by the above algorithm then it should satisfy the

following properties:

= jwil, = 1,

" (w;); =0 for j > i,

n o (w); ] = lwll.>=1//1,

s |Allw,l, = &, < 0,(A).

Finally, Chan's algorithm [Ref. 13]

computes a permutation Il and a QR factorization of A given by
All = QR where the elements of the lower d x d upper triangular

block of R satisfies

31
|24yl s 0/F + Y 22Ut Mg, /k < 2U0,/n
k=1
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for n-d< 1< 3 <n.

Very often, it is desirable to be able to infer the
rank of A from its QR factorization by estimating the small
singular values of A from the triangular factor R
(Ref. 14]. For this, we state bounds on the singular
values of A in terms of the matrices R and W, given by the

following inequality, for 1 < j < 4,

o, + -1
——ﬁl—(‘n;jj:'—l < bn—jq, < on—j;l < IRQJ2 Iz < on-jol \/jl(wzj) Ig/
2 2

where, W € R™, R € R™ and computed by the rank revealing
algorithm, R,; and W, denote the lower right j by 3j upper
triangular blocks of R and W respectively. These bounds are
proved in [Ref. 13].

Now using the obtained All = QR factorization we can solve
the least square problem Ax = b as follows. Let r be the rank
of the n x m matrix A, then the regression coefficients are
given by:

x = I, ; ((R, ;) 'Q,,;b)
where 1 = 1, 2, 3, ... , r.[Ref. 15]

The work for the Al = QR factorization is given by:

W(r) = m*(n - m/3) + Im’r + 2m?’r, where I is the number of
inverse iterations used at each step. Usually I = 2 is

sufficient in practice. So
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W(r) = m’(n - m/3) + 4m’r. (2.18)

C. PROCESS

In the problem of finding a vector x € R" such that Ax =
b where the data matrix A € R™ and the observation vector
b € R" are given and m > n when there are more equations than
unknowns, we say that the system Ax = b is overdetermined.
Usually an overdetermined system has no exact solution since
b must be an element of range (A), a proper subspace of R".

This suggests that we strive to minimize |Ax - b|, for
suitable choice of p. Different norms render different optimum
solutions. However, much progress has been made in this area,
and there are several good techniques available for l1-norm and
o-norm minimization. The oldest method for solving the full
rank least squares problem is the method of normal equations.
The accuracy of the computed normal equations solution depends
on the square of the condition number, and the algorithm is
not always accurate.

For the above reason some techniques are established
based on the QR factorization method. The Householder and
Gram-Schmidt QR approaches to the least squares problem are
more stable than the normal equation method. Furthermore
techniques for rank revealing QR-factorization (i.e., Chan's
algorithm discussed in subsection 3) can give a solution to
the subset selection problem even if A 1is nearly rank

deficient.

54




T —

In the following chapters we will try to compare the
results of the above algorithms computationally to verify the

effectiveness of each on the least squares problem.
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III. RESULTS AND COMPARISONS

A. PREVIOUS COMPARISONS

There have been a number of studies comparing Householder
and Modified Gram-Schmidt QR techniques to form an orthonormal
basis of R(a) [Ref. 16]. Moreover, in Elden's paper
there is a comparison between his and Efroymson's algorithm
for updating regressions. There are comparisons in work and
accuracy between the Classical and Modified Gram-Schmidt
methods in the Gragg-Leveque-Trangenstein paper. Tony Chan
also compares his column permutation QR factorization
algorithm with the regular QR algorithm, in case of required
work [Ref. 17]. Chan's comparison 1is applied only on
the QR factorization part of the regression updating
procedure.

Furthermore, an algorithm for solution of the subset
selection problem is presented in a technical support package
of NASA Tech Briefs [Ref. 18] that can be mentioned
as a modified Chan's algorithm. So a comparison can be done
between these algorithms. Finally a justification of the use
of the reorthogonalization in Gram-Schmidt QR factorization is
presented in the Daniel-Gragg-Kaufman-Stewart paper

[Ref. 19].
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B. MODEL AND DATA

The data in TABLE II-1 will be used to illustrate the
model selection methods in the full rank case. In the table
below there are two matrices, the 13 x 5 matrix X consisting
of a column of ones, followed by the 4 column vectors of the
observations on the independent variables, and the 13 x 1
column vector Y of observations of the dependent variable. In
order to conform with previous results, the data utilized in
this experiment is identical to that used in Elden's algorithm
[Ref. 8). We began the stepwise regression analysis by
inserting and deleting columns of the observation matrix X and
we continued by inserting and deleting rows of the model.

The data in TABLE II-2 and TABLE II-3, have one and two
dependent columns respectively. We obtained the first of them
by subtracting columns 2 and 3 of the data in TABLE II-1 and

the second by repeating the first column of the same data.

57




TABLE II-1

CASE_STUDY 1

INPUT DATA

MATRIX OF OBSERVATIONS

COLUMN
VECTOR OF
MATRIX OF OBSERV. ON THE INDEPENDENT VARIABLES |{ OBSER. ON
DEPENDENT
VARIABLES
1.00 7.00 26.00 6.00 I 60.00 78.50
1.00 1.00 29.00 15.00 52.00 74.30
1.00 11.00 56.00 8.00 20.00 104.30
1.00 11.00 31.00 8.00 47.00 87.60
1.00 7.00 52.00 6.00 33.00 95.90
1.00 11.00 55.00 9.00 22.00 109.20
1.00 3.00 71.00 17.00 6.00 102.70
1.00 1.00 31.00 22.00 44.00 72.50
1.00 2.00 54.00 18.00 22.00 93.10
1.00 21.00 47.00 4.00 26.0C 115.90
1.00 1.00 40.00 23.00 34.00 83.80
1.00 11.00 66.00 9.00 12.00 113.30
1.00 10.00 68.00 8.00 12.00 109.40

To obtain the data in the Table II-2,
matrix), we replaced the column 4 of the rfable II-1 with a new
column, column 6. This new column was obtained by subtracting
columns 2 and 3 of the matrix of observations in Table II-1.

Now the new matrix of observations has a linearly dependent

column and so it is rank one deficient.

58

(a non-full rank




TABLE II-2
CASE STUDY 2a (INPUT DATA)
MATRIX OF OBSERVATIONS
COLUMN
VECTOR OF
MATRIX OF OBSERV. ON THE INDEPENDENT VARIABLES | OBSER. ON
DEPENDENT
VARIABLES
1.00 60.00 7.00‘ 26.00 =19.00 78.50
1.00 52.00 1.00 29.00 -28.00 74.30
1.00 20.00 11.00 56.00 =45.00 104.30
1.00 47.00 11.00 31.00 =-20.00 87.60
1.00 33.00 7.00 52.00 =-45.00 95.90
1.00 22.00 11.00 55.00 =-44.00 109.20
1.00 6.00 3.00 71.00 -68.00 102.70
1.00 44.00 1.00 31.00 =30.00 72.50
1.00 22.00 2.00 54.00 -52.00 93.10
1.00 26.00 21.00 47.00 -26.00 115.90
1.00 34.00 1.00 40.00 =39.00 83.80
1.00 12.00 11.00 66.00 -55.00 113.30
1.00 12.00 10.00 68.00 -58.00 109.40

Furthermore in Table II-3 we inserted once more the column

1 of the matrix in Table II-2 as a new column 7.

This column

took the third place in the matrix and reduced its rank to

rank two deficient.
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TABLE II-3
CASE STUDY 2b (INPUT DATA
MATRIX OF OBSERVATIONS
COLUMN
VECTOR OF
MATRIX OF OBSERV. ON THE INDEPENDENT VARIABLES | OBSER. ON
DEPENDENT
VARIABLES
1.00 60.00 1.00 7.00 26.00 =-19.00 78.50
1.00 52.00 1.00 1.00 29.00 =-28.00 74.30
1.00 20.00 1.00 11.00 56.00 -45.00 104.30
1.00 47.00 1.00 11.00 31.00 -20.00 87.60
1.00 33.00 1.00 7.00 52.00 =-45.00 95.90
1.00 22.00 1.00 11.00 55.00 -44.00 109.20
1.00 6.00 1.00 3.00 71.00 -68.00 102.70
1.00 44.00 1.00 1.00 31.00 =-30.00 72.50
1.00 22.00 1.00 2.00 54.00 -52.00 23.10
1.00 26.00 1.00 21.00 47.00 -26.00 115.90
1.00 34.00 1.00 1.00 40.00 ~39.00 83.80
1.00 12.00 1.00 11.00 66.00 -55.00 113.30
1.00 12.00 1.00 10.00 68.00 -58.00 109.40

C. SIMULATION

As mentioned, the three compared algorithms use a QR
factorization technique to solve the regression problem. But
the three techniques used have different philosophies and
different advantages and disadvantages. However, to obtain the

numerical results needed for the comparison we used three
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analogous sets of MATLAB codes. It is important that Elden's
algorithm 1is not a "full" updating regression algorithm
because there 1is no way to update regressions wusing
Householder QR factorization. Elden adds or deletes columns or
rows at the beginning or the end of the observations matrix
and does not explicitly update the Householder OR
factorization. Because of this we did not implement Elden's
algorithm. Instead, we used the basic QR factorization
algorithm to solve each individual problem. For column
insertions and deletions on the right of the matrix our
algorithms are computationally equivalent with Elden's

algorithms.

D. VALIDATION

A numerical example was needed to illustrate the theory
developed in Chapter II, so for each of the three algorithms
we ran the corresponding MATLAB codes on the data of the case
study. All computations are done on a 286 PC in double
precision, with a relative machine precision of about 1075,
Notice that during the stepwise procedure on case study 1,
there was no rank deficient case, so there was no illustration
of the effectiveness of Chan's algorithm to reveal the

numerical rank of a given matrix.
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E. MEASURES OF EFFECTIVENESS

1. Case Study 1 (Full Rank Case)

In order to compare the performances or the algorithms,
the STSC'S Statistics/Graphics package STATGRAPHICS 4.0 was
used on the same data. The results of the algorithms and
STATGRAPHICS stepwise variable selection procedure are
presented in the following tables.

STEPWISE REGRESSION ANALYSIS WITH ORTHOGONAL
TRANSFORMATIONS

NUMBER OF OBSERVATIONS 13

STEP N 1

TABLE III-1. Summary Statistics for Stepwise Selection of
Variables for the Data in TABLE II after step 1.

VARIABLE ENTERED AFTER THE COLUMN OF ONES: Column 5

(1) (2) (3) (4)

GRAGG~- 5.G.S.
ELDEN LEVEQUE- CHAN STATGRARH.
TRANGENST. STSC

CONST. 117.5679312 | 117.5679312 | 117.5679312 117.567931

VARIABLE

COEFFICIENTS

ALPHAS || -0.7381618 -0.7381618 -0.7381618 -0.738162
RES.

SUM 883.8669169 | 883.8669169 | 883.8669169 | 881.89616
SQUAR.

Fe 22.7985202 22.7985202 22.7985202 22.7985
LEVEL

F OF

GENER. 22.7995203 22.7995203 22.7995203 22.80
MODEL
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STEP N 2
TABLE III-2. Summary Statistics for Stepwise Selection of
Variables for the Data in TABLE II after step 2.

VARIABLE ENTERED: Column 2
(1) (2) (3) (4)
CONST. 103.0973816 | 103.0973816 103.0973816 103.097382
VARIABLE
COEFFICIENTS
ALPHAS -0.6139536 -0.6139536 -0.6139536 -0.613954
ALPHAZ2 1.4399583 1.4399583 1.4399583 1.439958
RSS 74.7621122 74.7621122 74.7621122 74.7621
Fe 108.2239093 | 108.2239093 108.2239093 108.2239
F GEN. 176.6269531 | 176.6269531 176.6269531 176.6270
MODEL
STEP N 3

TABLE III-3. Summary Statistics for Stepwise Selection of
Variables for the Data in TABLE II after step 3.

VARIABLE ENTERED : Column 3
(1) (2) (3) (4)

CONST. 71.6483069 71.6483069 71.6483069 71.648307
VARIABLE
COEFFICIENTS
ALPHAS -0.2365402 -0.2365402 -0.2365402 -0.236540
_é}PHAZ 1.4519379 1.4519379 1.4519379 1.451938
ALPHA3 0.41610098 0.4161098 0.4161098 0.41611

RSS 47.9727294 47.9727294 47.9727294 47.9727

Fe 5.0258647 5.0258647 5.028647 5.0259
F GEN. 166.8316801 | 166.8316801 166.8310801 165.8317
MODEL ||
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STEP N 4
TABLE III-4. Summary Statistics for Stepwise Selection of
Var.ables for the Data in TABLE II after step 4.

VARIABLE REMOVED: Column 5

(1) (2) (3) (4)
CONST. 52.5773489 | 52.5773489 52.5773489 52.577349

VARIABLE

COEFFICIENTS

ALPHA2 1.4683057 1.4683057 1.4683057 1.468306

ALPHA3 0.6622505 0.6622505 0.6622505 0.662250
RSS 57.9044832 | 57.9044832 57.9044832 57.9045

Fe 1.8632873 1.8632873 1.8632873 1.8633

F GEN. | 229.5036971 | 229.5036971 | 229.5036971 | 229.5040
MODEL

STEP N 5
TABLE III-5. Summary Statistics for Stepwise Selection of
Variables for the Data in TABLE II after step 5.

OBSERVATION ENTERED: Row 3, (a second time)

(1) (2) (3) (4)

CONST. £..6817201 52.6817201 52.6817201 52.681720
VARIABLE

COEFFICIENTS

ALPHA2 1.4584656 1.4584656 1.4584656 1.458466
ALPHA3 0.6594452 0.6594452 0.6594452 0.659445
RSS 59.9550974 59.9550974 59.9550974 59,9551

Fe ||  ===== |  ===== |  =ec== |  o==--

F GEN. || 250 3437770 | 250.3437770 | 250.3437770 | 250.3438
MODEL
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STEP N 6
TABLE III-6. Summary Statistics for Stepwise Selection of
Variables for the Data in TABLE II after step 6.

OBSERVATION ENTERED: Row_ 2, (a second time)
(1) (2) (3) (4)
CONST. 53.0380112 53.0380112 53.0380112 53.038011
VARIABLE
COEFFICIENTS
ALPHA?2 1.4484905 1.4484905 1.4484905 1.448490
ALPHA3 0.6549147 0.6549147 0.6549147 0.654915
RSS 60.8055442 60.8055442 60.8055442 60.8055
Fe || ====- | === | === | —e——-
F GEN. 312.7948771 | 312.7948771 | 312.7948771 312.7950
MODEL
STEP N 7

TABLE III-7.

Summary Statistics for Stepwise Selection of
Variables for the Data in TABLE II after step 7.

OBSERVATION REMOVED: Row 1
(1) (2) (3) (4)

CONST. 53.0380116 | 53.0380116 53.0380116 53.038012

VARIABLE

COEFFICIENTS

ALPHA2 1.4484905 1.4484905 1.4484905 1.448491

ALPHA3 0.6549147 0.6549147 0.6549147 0.654915
RSS 60.8055442 | 60.8055442 60.8055442 60.8055

Fe || ----—= | —==== |  cee—= | —eee-

F GEN. | 312.7948771 | 312.7948771 | 312.7948771 | 312.7949
MODEL

65




2. Case Study 2 (Rank Deficient Case)

Here we want to test the thesis algorithms on a rank
deficient case. So we used the singular matrices in Tables II-
2 and II-3. The first matrix has one linearly dependent column
(column 5) and the second two linearly dependent columns
(column 3 and 6). We applied the corresponding algorithms'
MATLAB codes to those matrices. The results of the algorithms'

effectiveness are shown in the following tables.

TABLE IV-1l. Summary statistics for the rank deficient case,
(case study 2a).
RESULTS OF CASE STUDY 2a REGRESSION
(1) (2) (3) (4)
GRAGG- S.G.S.
ELDEN LEVEQUE- CHAN STATGRARH
TRANGENST. . STSC
CONST. 2,215-%10'% | -146.000000 71.6483069 | ————-
VARIABLE
COEFFICIENTS
ALPHAS || -0.0353*101® 2.000000 -0.2365402 | ——----
ALPHA2 || -=0.0194%*10%® 2.5676%10% 1.4519379 | —=-=--
ALPHA3 || -0.0173*10%® | -2.5676%10%* 0.4161098 | ===--
ALPHA6 || -0.0132*10® | -2.5676%10%" 0.0000000 | —==—-
RES.
SUM 5.7494%*10°° 45.8653934 47.9727294 | —===-
SQUAR.
F OF
GENER. 9,2803*10% | 116.4231889 | 166.8316801 | =—=-=--
MODEL
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TABLE IV-2. Summary statistics for the rank deficient case,

(case study 2b).

RESULTS OF CASE STUDY 2b REGRESSION

(1)

(2) (3) (4)

CONST. 5.786%10%

-7.6870%10% 71.6483097 | —==--

VARIABLE

COEFFICIENTS

ALPHAS || =0.007242 3.8663%10%? ~0.2365402 | —----
ALPHA7 || -5.786%10% 7.6870%10% 0.0000000 | —-----
ALPHA2 0.708*10' | -3.8663%10!2 1.4519379 | —===-
ALPHA3 {| -0.708%*10% 3.8663%10%2 0.4161098 | -----
ALPHA6 | -0.708*10% 3.8663%10%2 0.0000000 | =—-----

RSS 59.17750

1.4738%10%8 47.9727294 | —em-—-

F GEN. || 212.9952033
MODEL

3.953*%107%! | 166.8316801 | —~===-

A discussion

following chapter.

of the above results is given in the
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IV. CONCLUSIONS AND RECOMMENDATIONS

A. GENERAL

The major emphasis of this thesis was to examine the
performance of three algoritlhims for updating regressions. As
mentioned, the algorithms examined were Elden (Householder),
Gragg-Leveque-Trangenstein and Chan. After running the
corresponding MATLAB codes we obtain the results shown in
Tables III and IV. The discussion of these results will be
divided into two categories: the accuracy and stability, and

th-: number of computations.

1. Accuracy and Stability

a. Full Rank Case

The results of the case study 1, in Table III, show
us that no one algorithm uniformly outperforms any other with
regard to accuracy in the full rank case. All algorithms give

exactly the same results in all steps.

b.

Deficient Rank Case

Comparing the results of the case study 2 (TABLES
IV-1 and 1IV-2) with the results of the case study 1 step 3
(TABLE III-3) we can see that they are identical except for

the coefficients of variables ALPHA6 and ALPHA7. These
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variables are used only 1in the case study 2 and they
correspond to the linearly dependent columns of the matrix of
observations (see TABLES II-1 and II-2). The values of these
variables' coefficients in both rank deficient cases are zero.
Because of the above we can say that the results of Chan's
algorithm 1n the rank deficient case without the linearly
dependent columns are the same as the other algorithms'
results in the full rank case. However in case study 2 (rank
one and rank two deficient cases) only Chan's algorithm gives
reasonable results. The results of the other two algorithms
are totally wrong. Now it is easy to understand that the
philosophy of Chan's algorithm is to drop the 1linearly
dependent columns of the matrix of observations and wocrk with

the rest of them to obtain the regression coefficients.

2. The Number of Computations
To compare the volume of computation of the present
algorithms we consider that all m column vectors of ann x m

matrix A are added to the subspace.

a. Computing Regression Coefficients at Each Step

In the case where the regression coefficients are

computed at each step the work of algorithms is as follows.
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The number of flops!! of Elden's method is about
2nm’, (2(n - m)m® + 4m’/3 for producing the QR factorization,
m’/3 for updating the inverse of the triangular matrix and m®/3
for computing the regression coefficients). Elden's algorithm,
as mentioned 1in Chapter II subsection Bl, 1is wupdating
regression without using at each step the matrix Q but working
only on the triangular matrix R. This procedure avoids
computations on matrix Q and so is cheap.

If the data matrix is not very rank degenerate Chan
uses same work as Elden on the updating regression procedure,
(Householder without updatinag Q). Using the equation (2.18)
for this case with r = m we have a total work for the rank
revealing QR factorization of W(m) = nm?® + 11m’/3. Also the
amount of flops for computing the regression coefficients is
m’/3. In other words the work for Chan's QR factorization of
Rl is about nm? + 4m’ flops.

Gragg-leveque-Trangenstein's algorithm requires 8nm
flops for column insertion, 0 flops for column deletion, 3m(m
+ 2n) for row insertion, m(3m + 14n, flops for row deletion.
In this case the regressi n coefficients are computed at each
step we have to add the work of solving the triangular system
R b, = c.. That requires a total of m’/2 flops. This amount of

flops is because, as mentioned in Chapter II subsection B2,

‘'Flops number means the whole number of multiplications
and additions.
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this algorithm updates the regression using the matrix Q for
keeping the numerical stability. That means that in the worst
case the algorithm requires a total work of about ém? + 28nm
+m’/2 flops.

After the above we can see that Elden's and Gragg-
Leveque-Trangenstein's algorithms outperforms Chan's
algorithm. As mentioned, in this thesis we always examine the
case in which the observation matrix has more rows than
colunns (i.e., n > m). Keeping a ratio n/m = 2 Gragg-Leveque-
Trangenstein's algorithm is the cheapest for n bigger than 18.
This means that for big applications this algorithm is the

cheapest.

b. Computing Regression Coefficients Once

In the case where the regression coefficients are
computed once we have a lower order work for this computation
which can be ignored. So the total work for the algorithms is:

Elden's 2nm?> - m®/3, Gragg-Leveque-Trangenstein's 6ém?’ + 24nm

and Chan's nm? + 11m°’/3. Keeping the same ratio as above Gragg-

Leveque-Trangenstein's algorithm is still the cheapest for n

bigger than 15.

B. RECOMMENDATIONS
In this thesis we examined three procedures of QR

factorization to update the variable selection problem. The
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above factorization can be also used on several other
mathematical and statistical procedures. Important research
can be done on using the QR updating algorithms to solve the
linear programming problem using the simplex method and
Karmarkar's algorithm.

As mentioned in Chapter III section D, we used Householder
codes to simulate the procedure of Elden's algorithm. A closer
comparison can be done by a full simulation of this algorithm.
Finally, it should be interesting to extend this thesis in
case where we have an observation matrix with fewer rows than

columns (i.e., n < m).
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APPENDIX A. MATILIAB CODES FOR HOUSEHOLDER'S (ELDEN) ALGORITHM
The codes dgrhf.m, grhup.m, grucd.m, dgruri.m, qrurd.m
grorth.m and rot.m were reproduced here with Professor's Gragg

permission.

function W = gqrhf (A)
W = gqrhf(A):

W is a pack formed array which contains the HOUSEHOLDER QR
FACTORIZATION of A. We have A = QR with Q unitary and R
upper trapezoidal with nonnegative diagonal elements. The
commands R = W, [Q R] = grhup(R), executed by grh, unpack.
However this is not necessary, and in fact it's inefficient,
for most applications.

00 o0 o° o\ o N0 0 o\

Copyright (c) 16 February 1991 by Bill Gragg. All rights
reserved.

o\° o

% gqrhf calls sgn.

o)

% begin grhf

[n m] = size(A):
for k = 1:min(m,n)
q = k:n; u = A(q,k):; r = norm(u); t = u(l):
ifr>0
t = u(l): s = - sgn(t); u(l) = t - r*s;
t = abs(t):; t=1+ t/r; d = sgrt(2*t);
A(g,k) = usd; d = r*sqrt(t): u = u/d:;
if Kk < m
p = k+1l:m; W = A(q,p): W =W - u*(u'*w);
t = W(1,:); W(l,:) = s'*t: A(q,p) = W;
end
end
end
W = A;
% end gqrhf

function [Q,R] = grhup(R)

$ [Q R} = grhup(R):
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Computes the ELEMENTWISE QR factorization of A given the
output R. Thus [Q KR]=qrh(A):=qrhup(qrhf(A)) is essentially
equivalent with matlab's function qr, except that we execute
an inexpensive unitary diagonal scaling to make the diagonal
elements of R nonnegative. It is NOT USEFUL to have Q in
elementwise form to solve the LS problem, norm(b - Ax) =
minimum. The purpose of matlab having Q in such form may be
to avoid having to explain how the Householder leasi squares
algorithm really works.

Copyright 16 February 1991 by Bill Gragg. All rights
reserved.

grhup calls sgn.

begin qrhup

[n m] = size(R); s = - sgn(diag(R)): e = ones(n-m,1);
Q = diag((sse]): g = m+l:n; z = zeros(n-m,1l);
root2 = sqrt(2):;
for Xk = min(m,n):-1:1
g = [k ql]; u=R(qk); r = norm(u);
ifr >0
u=u/(r/root2); T =Q(q,q):; Q(q,q) =T = u*x(u'*T);
end
R(k,k) = r;
if k < n
R(k+1l:n,k) = z;
end
z = [2:0];
end
end qrhup

function W = sgn(2)

W = sgn(z) or W = sgn(2):

For z a complex number w is z/abs(z) if Z = 0 and + 1 if
z = 0. Thus sgn is the same as matlab's sign function EXCEPT
when z = 0. We always have abs(w) = 1. W is the elementwise
(Schur) sgn function of the complex matrix Z.

Copyright (c) 19 January 1991 by Bill Gragg. All rights
reserved.

sgn calls no extrinsic functions.

begin sgn
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W = sign(2); p = find(2 == 0); n = length(p):
W(p) = ones(n,1l):
end sgn

Total flops (scalar case, see csgn):
Real ca. 0 flops. Complex case: 1 sgrt + 4 mults + 1
add.

function {x,r] = grhlsl(W,b)
[x ¥) = grhlsl(W,b):

Giver that the HOUSEHOLDER QR FACTORIZATION of A, is stored
in packed form in the array W, ghrs SOLVES the least squares
problem norm(b - Ax) = minimum for x. It also efficiently
computes the residual r := (b - Ax). We assume that rank(A)
= m <= n, where A ~as m columns and n rows.

ghrs calls no extrinsic functions.

begin qrhs
(n m] = size(W): root2 = sqrt(2):

Forward solving: computing Q'b = H(m)H(m-1)...H(1)b.
for Xk = 1I:m

q = k:n; u = W{gq,k): rl = norm(u); d(k) = rl;
if rl1 > 0
u = u/(ri/root2); v = b(q):; b(gq) = v - u*x(u'*v);
end
end
Backsolving: solving Rx = bl := b(l:m) for x.
s = - sgn(diag(W)): X = zeros(m,1l);

¥(m) = s(m)'*b(m)/d(m);
for K = m-1:-1:1
dP = [k+1 p]: x(k) = (s(k)'*b(k) - W(k,p)*x(p))/d(k);
en
Computing the residual r.
if m<n r =>b - Wtx; else r = 0;
end
end grhlsl

function [Eb,RSS,F,Fe] = regres2(Q,R,P,RSSp,b,r)

[Eb RSS F Fe)= regres2(Q,R,P,RSSp,b,r):
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%

Eb = E(b), is the expectation of beta of the linear least
squares problem, novm(b - Ax) = minimum, RSS is the residual
sum of squares and F the statistic for a general linear
hypothesis. Also Fe is the significance level to enter, SLE,
"F-to-enter", for the new variable, on where A = QRP' is the
QR general FACTORIZATION of A. p = A*x is the orthogonal
projection of b onto R(A) and the residual vector r = b - pr
= p - Ax, is the orthogonal projection of b onto N(A'), the
orthogonal complement cf R(A). It is assumed that A is not
a zero matrix.

regres2 calls rows, cols, ones and norm.

begin regres?

Eb = r + Q*R*P'*x;
A = Q*R*Pp'; n = rows(A):; m = cols(A);
e = ones(n,1l); RSS = r'*r; v = Q'*b;
f = (norm(v)-abs(e'#*b)/sqrt(n))*
(norm(v)+abs(e'*b) /sqrt(n)):;
df = (n-m)/(m-1); F = (df*f)/RSS:
Fe = (abs(RSSp~RSS)*{(n-m))/RSS;

end regres2
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APPENDIX B. MATLAB CODES FOR GRAGG-LEVEQUE-TRANGENSTEIN'S
ALGORITHM

function [Q,R] = gruci(Q,R,a,i)
[Q Ry = quCi(Q;Rra.’i):
UPDATES the QR factorization 2 = QR when a is INSERTED as

COLUMN i of A. Q has orthonormal columns and R is upper
trapezoidal with at least as many columns as rows.

o0 o o\ o o

Copyright (c¢) 20 July 1991 by PRill Gragg. All rights
reserved,

o0 o\

o

gruci calls qrorth and rot.

[

begin gruci
fr m] - =ize(R): n = length(a): {d s t] =
qrorth(Q,a):
R(:,i+1l:m+1) = R(:,i:m); R(:,1) = s; m=m+ 1;
if r < n
o; (Q ql: R = [R;zeros(l,m)];
r r + 1; R(r,i) = t;
end
for k = r-1:-1:1
p = k+l:m; o
rot(R(q,1)):
R(g,i) = [t;0]: G
Q(:,q)*G;
R(g,p) = G'*R(q,p)’
end
if i < r
g = i+l:r; d
san(d(q));
D = diag(d); Q(:,49) = Q(:,q9)*D; R(g,:) =
D'*R(g,:):
end
% end dgruci

]

k:k+1; [c s t] =

[c - s';s c']; Q(:,q)

diag(R): d =

function [Q,R,a] = grucd(Q,R,1)

% [Q R a] = qrucd(Q,R,1i):
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UPDATES the QR factorization A = QR when COLUMN i is DELETED
from A. Q has orthonormal columns and R is upper trapezoidal
with at least as many columns as rows. The deleted column is
called a [Ref 19].

Copyright (c) 20 July 1991 by Bill Gragg. All rights
reserved,

grucd calls rot.

begin qrucd

if nargout > 2 a = Q*R(:,1); end,
[r m}] = size(R):; R{:,1) = []: m=m- 1;
for k = i:r-1
p = k+l:m; g = k:k+1; [c s t] = rot(R(g,k)):
R(q,k) = [t:;0]): G = [c -s';s c'];
Q(:,q) = Q(:,q)*G;
if k <m R(q,p) = G'*R(q,p); end
end
if r >m
r=r - 1; q=1l:r;
Q =0Q(:,9); R = R(qg,:):
else
s = sgn(R(r,r)); Q(:,r) = Q(:,xr)*s;
R(r,:) = s'*R(r,:):
end

end grucd

function [Q,R] = qgruri(Q,R,a,])
[Q R] = qruri(Q,R,a,]j):
UPDATES the factorization A = QR when a' is INSERTED as ROW

j of A. Q has orthonormal columns and R is upper trapezoidal
with at least as many columns as rows.

Copyright (c) 20 July 1991 by Bill Gragg. All rights
reserved,
gruri calls rot.
begin qruri
m = length(a); [n r] = size(Q):
n=n+ 1; Q(j:n,:) = [zeros(l,r): Q(j:n-1,:)];
r=r + 1; Q(:,r) = zeros(n,1l); Q(3,r) = 1;
R = [R;a']:
for k = 1:r-1
p = k+l:m; = [k r};
(c 3 t] = rot(R(q,k));
R(g,k) t:;0]; G = [c -s';s c'];
)

ky = [
Q(:,9) = Q(:,q9)*G;
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%

if Kk < m R(q,p) = G'*R(q,p): end

end
if r >m
r=r - 1; qg=1l:r;
Q = Q(:,9); R = R(q,:);
else
s = sgn(R(r,r)): Q(:,r) = Q(:,r)*s;
R(r,:) = s'*R(r,:);
end

end gruri

function [Q,R,a] = grurd(Q,R,3Jj)
[@ R a] = gqrurd(Q,R,]J):

UPDATES the QR factorization A = QR when ROW j is DELETED
from A. Q has orthonormal columns and R is upper trapezoidal
with at least as many columns as rows. a' = A(j,:) = Q(j,:)R
is the deleted row.

grurd calls grorth and rot.
Copyright (c) 20 July 1991 by Bill Gragg. All rights
reserved,

begin grurd

[n r] = size(Q): [r m] = size(R); t = [1:j-1 j+1:n];
if r < n ‘
q = zeros(n,1l); a(j) = 1; r=1r + 1;
Q(:,r) = grorth(Q,q): R(r,:) = zeros(li,m);
end
for k = r-1:-1:1
p = k:m ; q= [k r]:;
(c s u] = rot(Q(j,q)):
Q(j,r) = u; G = [-s c';c s'];
Q(t,q) = Q(t,q)*G;
R(q,p) = G'*R(q,p)’
end
r=r - 1: q=1:r; Q = Q(t,q):
a = R(r+1,:)'; R = R(qgq,:):
d = diag(R): d = sgn(d); D = diag(d); Q = Q*D;
R = D'*R;

end grurd

function [q,r,s,k] = grorth(Q,a)

(d r s k] = qrorth(Q,a) or g = qrorth(Q):
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ORTHONORMALIZES column a against the columns of Q wusing
REORTHOGONALIZATION. It is assumed that Q has (nearly)
orthonormal columns. Let [n m] = size(Q). An error message
occurs if m > n. For m <= m we have

[Q a) = [Q q][I r]
[ s] with Q'gq =0, s >= ¢
and, if m < n,
g'qg = 1.
If m = nwe take q := 0 and s := 0. If a is not input we
take a := 0. For m < n and a = 0 we get a unit vector g in

the orthogonal complement of the range of Q.

grorth calls no extrinsic functions.

Copyright (c) 20 July 1991 by Bill Gragg. All rights
reserved,

begin grorth

(n m] = size(Q):

if nargin < 2 a = zeros(n,l); end

if m > n error('Q has too many columns.'), end

if m==n g = zeros(n,1); r =Q'*a; s = 0; k = 9;

return, end

norma = norm(a); t = norma/2;
r = Q'*a; b =a - Q*r; s = norm(b): k =1;
if norma == 0 zflag = 1; Xk = 0; end
while 0 == 0
if s >t q = b/s; break, end
if kK > 4 error('Process did not terminate in 5
iterations.'), end
if s <= t*eps/10
[u j] = min(norms(Q')):
if ==
s = eps/4; b(j) = s;
else
b(j) = b(J) + s*eps/4;
end
norma = s; k =k + 1/2;
end
t =s/2; b=Db-Q*(Q'*b); s = norm(b); k =k + 1;
end
end
if zflag r = zeros(m,1l): s = 0; end

$ end grorth
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function [c,s,r] = rot(x,y)
[c s r] = rot(x,y) or {c s r] = rot(z):

Carefully computes the Gram-Schmidt QR factorization

zZ = [x] = [¢c] ¥
(y) [s] .
Note that
(x] = [c -s'] [r] =: QR
ly] (s c'] [0]

is a full QR factorization. This is a "tool of the trade" in
computational 1linear algebra. Note that Q and Q' are
ROTATIONS and that
[ ¢' s') [x] = [r]
[-s c ] [y] (0]

Copyright (c) 28 October 1990 by Bill Gragg. All rights
reserved.

rot calls no extrinsic functions.

begin rot

if nargin < 2 vy X(2); x = x(1): end

¢ = sign(x): s sign(y): X = abs(x): y = abs(y):
ify>o0
if x >y
t = y/x; u = sqrt(l + t*t):; r = x*u; v = t/u;
u = 1/u; cC = u*c; s = V*s;
else
t = x/y: u = sqrt(l + t*t); Y = y*u; v = 1/u;
u = t/u; Cc = u*c; S = Vv¥s;
end
else
r = X; if r==0 ¢ =1; end
end
end rot

Total flops:
Real case: sqrt + 5 mults + 1 add.
Complex case: 1 sgqrt + 11 mults + 3 adds.

-
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function [x,r] = grmgsls(Q,R,b)
(x r] = qrmgsls(Q,R,b):

Solves the norm(b - Ax) = minimum for x given the QR
factorization A = QR and computes the minimal norm rnorm
using the MODIFIED GRAM-SCHMIDT process (mgs).

grmgss calls gfsb.

begin grmgsls

Compute the "Fourier coefficients" c = Q'b and the residual
vector r = b - AXx = b - QRXx = b - Qc = (I - QQ')b, WITHOUT
COMPUTING x.

r = b;
for i = 1l:cols(Q)
q=0Q(:,1); t = g'*r; c = [c;t):
end
Compute r and backsolve for x.
X = gfsb(R,c): r = b - Q*c;

end grmgsls
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APPEND1X C. MATLAB CODES FOR CHAN'S ALGORITHM

function [Q,R,Pi,rank,W,delta] = rrqr(A,tol)
R = rrqr(A,tol)
[Q,R,Pi,rank,W,delta] = rrqr(A,tol)

Compute a rank revealing QR factorization of A:
A*Pi = Q*R = Q [ R 11 R 12 ] ,
[ 0 R 22 )
such that Q is m-by-n, R is triangular n-by-n, and

1) R_11 is rank-by-rank and well-conditioned,

2) rank = numerical rank of A with respect to tol,
defined as the number of singular values greater than
tol,

3) norm(R_22) is of the same order of magnitude as the
(rank+1) 'th singular value.

Also, return a matrix W whose columns are orthonormal and
span an aproximation to the null "N" space of A, and the §
delta(rank:nl:2) containing lower and upper bounds for the
last n-rank+1l singular values of A (the first rank-1l rows of
delta are zero).

If no tol is specified, sqrt(n)*norm(A,1l)*eps is default.

This program is an implementation of the algorithm described

in the paper: T. Chan, "Rank Revealing QR factorizations",
Lin. Alg. Appl. 88/89 (1987), 67-82.

The use of the factor ¢ max ratio was suggested in: C. H.

Bischof, & P. C. Hansen, "Structure preserving and rank
revealing QR-facte "izations", SISSC, to appear
[m,n} = size(A):; de .ta = zeros(n,2); c max ratio = 10;

if (nargin==1), tol = sqrt(n)*norm(A,1l)*eps; end
if (nargout>4), W = []; end

Compute an initial QR factorization A*Pi = Q*R.
[Q,R,Pi]) = gr(A): Q = Q(:,1:n); R = R(1l:n,:);

Prepare for the iterations. Estimate smalle... singular
value of R.

nu = 0; i = n;

[sest,v] = ccvl(R); if (nargout>5), delta(n,l) = sest; end

Loop until a singular value estimate larger than tol is
found.
while sest < tol, nu = nu+l;

Update the matrix W.
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if (nargout>4), W = [[v;zeros(nu-1,1)],W]:; end

Find the element in v with greatest index, numerically
within a factor c¢ max ratio of the numerically largest
element.
vmax = norm(v, inf);
for k=i:-1:1

if (vmax <= abs(v(k))*c max ratio), break, end
end

If necessary, generate the permutation that brings the pivot
element of v to the last position, apply the permutation to
W, Pi, and R, compute a new QR factorization of R(1:i,1:1),
and update Q and R.
if (k<i)
p = [k+1l:i,k]; Pi(:,k:1i)
if (nargout>4), W(k:1i,:)
for j=k:i-1
[c,s] = gen_g(R(j,j:n),R(J+1,3:n));
[R(J,J:n),R(J+1,7:n)] =
app_g_left(c,s,R(j,j:n),R(J+1,j:n));
R(3+1,3) = 0:
(Q(:,3),Q(:,3+1)] = app_g_right(c,s,Q(:,3),Q(:,3+1));
end
end

Pi(:,p): R{:,k:1) = R(:,p):
W(p,:); end

o

Provide an upper bound for the i'th singular value.
if (nargout>5), delta(i,2) = norm(R(i:n,i:n)); end

Estimate the smallest singular value of R(1:i-1,1:i-1),
which is a lower bound for the (i-1)'th singular value.
i = i-1; [sest,v] = ccvl(R(1:i,1:1)):

1f (nargout>%), delta(i,l) = sest:; end

end

Finish the computation. If nargout < 2, return R.

if (nargout>5), delta(i,2) = norm(R(rank:n,rank:n)); end
rank = n - nu; if (nargout>4), W = Pi*W; end

if (nargout < 2), Q@ = R; end
This algorithm is described by T. Chan & P. Hansen [Ref 15].

function [x,r] = basic(Q,R,Pi,b,rank)
(x r] = basic(Q,R,Pi,b,rank)
Compute the basic solution. If the RRQR of A is

A*Pi = Q*R =Q [ R 11 R 12 ] ,
[ 0 R 22]
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where A 11 is rank-by-rank, then the basic solution is
¥ = Pi*{ inv(R _11) 0 ]*Q'*Db
t 0 0]

Ref.: G. H. Golub & C. F. Van Loan, "Matrix Computations",
Johns Hopkins, 1989. Subsection 5.5.6.

Per Christian Hansen, UNI-C, 07/11/90.

X
r

Pi(:,1l:rank)*(R(1l:rank,1l:rank)\(Q(:,1l:rank) '*b));
b - Q*R*Pi*x;
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